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Ahstrae~An empirical correlation for the turbulence viscosity in two-phase flow is developed, based on 
the assumption that the fluctuations of the turbulent velocity may be divided into two components: one due 
to the momentum exchange of the liquid phase, the other due to the movement of the dispersed phase. The 
reliability of the correlation is checked against measurements from various sources, showing a standard 
deviation of 22 per cent. 

1. INTRODUCTION 
In single phase flow it is c~stomary to express the behavior of the turbulence stresses in the 
equations of motion in terms of the mean-velocity gradients, based on the assumption that the 
turbulence stresses act like the viscous stresses. This eddy or turbulence viscosity concept was 
introduced by Boussinesq, who considered the turbulence stresses directly proportional to the 
velocity gradient (e.g. Hinze 1975). A correlation for the turbulence viscosity e,  in channel 
flow is known from measurements. However, to the author's knowledge, no correlations exist 
for the turbulence viscosity in two-phase gas-liquid flows. Such a correlation would be useful 
as it would permit to calculate the viscosity terms in the momentum balances in case of two 
dimensional computations for gas-liquid flows. The present paper tries to establish such a 
correlation from available experimental data on two-phase flow pressure loss. For this purpose 
an analogy in certain aspects is assumed between single phase and two phase flow. At first a 
method is outlined to obtain an expression for the frictional pressure drop in single phase flow 
as a function of the turbulence viscosity and the velocity gradient at the wall. The method is 
based on the fact that em is almost constant in the core region of pipe flow and that the velocity 
distribution can be approximated by a power law. 

Subsequently the same method will be applied to one-dimensional two-phase flow, on the 
assumption that two analogies between this type of flow and single phase flow are valid, viz. 
that the turbulence viscosity is constant in the core region of the channel and that the velocity 
distributions are similar. It is further assumed that the turbulence stresses may be subdivided 
into a part due to the movement of the liquid phase and another part attributed to the 
momentum exchange caused by the presence or relative movement of the gas phase. This 
approach is used by Sato & Sekoguchi 0975) for predicting the liquid velocity distribution in 
two phase bubble flow. Thus an expression is obtained for the frictional pressure loss in two 
phase flow, again as a function of the turbulence viscosity and the liquid velocity gradient, 
which in turn is used in reversed sense, i.e. to compute the turbulence viscosity from available 
experimental data on two-phase frictional pressure loss. 

2. PRESSURE DROP IN SINGLE PHASE FLOW 
The momentum balance equation for steady, homogeneous, axisymmetric flow through a 

pipe of constant circular cross-section yields (e.g. Hinze 1975): 

} a-~r ru,.u~) = - ~ +  ~Tv2u. [ll 
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where r and z denote the radial and axial coordinate direction, respectively, and the operator W 
is defined by 

V 2= 4 rOz" 

The momentum equation for turbulent flow is obtained by applying the well-known Reynolds' 
procedure to [1] by substituting 

u = l i+u '  

and 

p = /~+p '  

where the overbar denotes time-averaged values and the prime denotes the fluctuating com- 
ponents. 

Averaging with respect to time thus yields 

r ~ r u , u z )  r-~r~rUrUz)---~-~+r~[--~-+ r ar /"  [2] 

For fully developed and axi-symmetric flow ti~ = 0, hence [2] reduces to 

d,~ 1 d [ duz ..-s~..,~ 
-d-~ = r -~-~ r[ ~--d-~r - PU,U~ } [3] 

o r  

d/~ I d 
d z  - r dr (r'r'Z) [41 

where %, the sum of the molecular and turbulent shear stresses, is now defined by 

dtiz 
Trz : ~'-~r - -  ptl~ 'z ,  [5] 

The term pu'ru'z, called the turbulence or Reynolds' stress, is assumed to be directly proportional 
to the velocity gradient, according to the hypothesis of Boussinesq, yielding 

dtiz 
~',~ = (,7 + o~m~ [6] 

where em is the so-called eddy or turbulence viscosity. It is known that the shear stress 
distribution is linear (e.g. Hinze 1975). The frictional pressure drop is obtained after integration 
of [4] over the entire cross section of the pipe, yielding 

~ 'w [7] 

where rw is the wall shear stress, which can be determined from [6] if the turbulence viscosity 
and the velocity gradient at the wall are known. 
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• Measurements by Nikuradse and Nunner have shown that the velocity distribution can be 
approximated by a power law 

According to Nunner (e.g. Hinze 1975) the value for n is found from 

W 
n 

where the friction factor ~ is defined by 

[8] 

[9] 

dp) A 1 , ,2 
f=lb~P~u~ * [10] 

• Regarding the turbulence viscosity it is known from experiments by Laufer and Nunner (see 
Hinze 1975) that ~,~ is almost constant in the core region of pipe flow, yielding 

em Reo/A 
7 - -  30 ~,/8 [11] 

where ReD is defined by 

ReD = p(u~)D [12] 

and the friction factor A is given by the correlation for smooth pipes in the Moody diagram (cf. 
Drew et al. 1932): 

A = 0 . 0 0 5 6 + ~ .  [13] 

However, as neither the velocity distribution given in [8] nor the assumption of uniform 
turbulence viscosity are valid in the wall region, it is not easy to satisfy the condition that the 
linear shear stress distribution yields the actual shear stress at the wall. Assumption of a slightly 
modified distribution for the shear stress (see figure l) makes it possible to find the radial 
position where the velocity gradient is such that the shear stress determined from [6] equals the 
wall shear stress ~-~. Thus the following relation should be satisfied 

n \  u /k dr / ,  = ~ [14] 

where the subscript r refers to the radial position to be found. To evaluate relation [11] we 
shall first have to establish expressions for (duJdr) and ~'w. 
@ The velocity gradient is obtained by differentiating [8]. As the cross-sectional averaged value 
(uz) is known instead of Uzmax, [8] is integrated over the cross section and divided by the area 
(~']4)D 2, yielding 

tThe bar over uz will be omitted for convenience. 
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Figure 1. Distributions for turbulence viscosity, velocity and shear stress. 

o r  

2Uzmax [15] 
(Uz) = (X/h + 1)(X/h + 2)" 

This equation is substituted in [8], yielding 

(uzAx/A~( / 2r\ w 
- -  . Uz 

Differentiation with respect to r gives 

~--~ = ~ X / ~ ( V X  I)(X/),+ 2)(1 ~)v(A-') + - - -  . [163 

• The wall shear stress rw is obtained from [7], where it is known that the frictional pressure 
drop can also be related to the momentum flux of the fluid, according to [10], yielding 

A 1 , ,2 4 

or  

A 2 r~ =-~p(uz). [17] 
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• With [15]--[17] it is now possible to satisfy [14]. Substitution of [16] and [17] into [14] yields 

~ ( l + ~ ) ~ - ~ a (  1 -~) v~-' A 8 -  -2 - = " ~ p ( U z )  [181 

where 

a = VA(VA + 1)(VA + 2). [19] 

After some rearrangement, [18] yields 

(1--~)w-~= ,~Reo . 
8a(l + ~ )  

[20] 

With the aid of [111, [20] reads: 

AReo .~ o/v<~-l)) [21] 2!= 1 _ _ ~ ,~ 
o \8a(1+-~-~/~) J 

where ~ is given by [13] and the factor a by [19]. The following table shows (2d/~as  a 
function of the number Re~> 

ReD 2r/D 
104 0.812 
105 0.817 
106 0.816 
107 0.816 
10 s 0.815 

It is clear that for the range of practical interest a value for (2riD) of 0.816 is a good 
approximation. This may be illustrated with the aid of a subset of 16 measurements on frictional 
pressure loss in single phase water flow, taken from the total set used in subsection 4.1. For 
these measurements, obtained by Malnes (1966) and Niese (1968), the frictional pressure drop 
was computed using [6] and [7], in-which (duJdr) is obtained from [16] and 2dD = 0.816. Figure 
2 confirms that the computed and measured values of the frictional pressure loss are in good 
agreement. A second comparison was made with the aid of two well-known statistical 
parameters, viz. the arithmetic mean deviation (M.D.) g and the standard deviation (S.D.) ~,, 
defined in the way proposed by Dukler et al. (1964). The fractional deviation is given by 

8~ = Pi - Mi. 100 per cent 
Mi [22] 

where P~ and M~ are the predicted and measured values for the ith measurement. 
Hence the M.D. is 

_ r l n  
8 -- ~-~ 8~ [23] 
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Figure 2. Computed and measured frictional pressure loss for water flow, 

and the S.D. 

,~ = ~/ ( ~  (a, - g)2)l(n - l) [24] 

where n is the number of measurements. 
The computed frictional pressure loss values approximate the measured values within a 

M.D. of 0.02 per cent and a S.D. of 3.22 per cent. 
It is worthwhile to note that the position 2riD = 0.816 is close enough to the wall to validate 

the assumed shear stress distribution shown in figure 1. 

3. ANALYSIS  FOR TWO-PHASE FLOW 

In accordance with Sato & Sekoguchi (1975) we now assume the averaging procedure of 
Reynolds, applied in section 2 for single-phase flow, to be also applicable to two-phase flows, 
where the liquid phase is incompressible and the gas phase behaves only as a voidage. Hence 
only the shear stress in the liquid phase will be considered. It is further assumed that the 
turbulent fluctuations can be divided into two components, caused by the movement of the 
liquid and by phase interaction, respectively. Thus 

u = a + (u't,,, + (u'l~ 

where the indices denote (liquid) momentum and phase interaction, respectively, leading to the 
following expression for the shear stress in two-phase flow: 

, /  d~L . . . . .  - OL(u-~3~) r,z = (1 - c,~ n--tiT- r - OL~u,uzt,, [25] 
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With the hypothesis of Boussinesq: 

/ + 6m + ~_~.i~dULz • ,~ = (1 -a)~L{1 
VL VL] dr \ [26] 

where ~i represents the turbulent viscosity due to phase interaction. Equation [7] is still valid, 
yielding 

dp) 4 

where ~'w is obtained from [26] using the same procedure as outlined in the foregoing section. 
For this purpose the following assumptions must be made: 

--The liquid velocity distribution is similar to that in single phase flow, as was found by Sato 
et al. (1975) and Serizawa et al. (1975), and may hence be approximated by the power law of [8]. 

--The velocity gradient [16] for which ~-,~ =Tw occurs at the same radial position as was 
found for single phase flow, i.e. 2riD = 0.816. 

--Both em and ~i are almost constant in the core region of the pipe, as validated by Sato et 
al. (1975). 

Correlations for ~m and A are obtained by slightly modifying the single phase expressions [11] 
and [13]. Hence 

~s = Reo, p ./[~t~_~ 
RL 30 ¥ \  8 ] [27] 

and in the same sense 

Atp = 0.0056 + R Oe ~ .  [28] 

In the literature opinions on the proper difinition of Retp appear to vary. The present author has 
chosen the following approximation, based on the definition of the Reynolds number as the 
ratio of the inertia and viscosity forces. The inertia force is represented by the momentum flux 
of the flowing mixture, whereas it is assumed that the viscosity forces are only present in the 
liquid phase, as there is always a boundary layer of liquid at the pipe wall and moreover 
~0 '~ ~L. Thus 

Reotp = apou~ + (1 - ot)pLUL 2 

As Po ~ PL this may further be simplified to 

Revtp = (1 - a)pZUL ~ 

or  

Reo, o = (1 - a)pLULD 
7/L [29] 
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4. D E T E R M I N A T I O N  O F  ~/ 

After determining expressions for the turbulence viscosity ~ and for the velocity gradient 
(duLJdr) it is then possible to compute (~/v) from [26], provided all other variables are known 
from measurement data. In the absence of an analytical model the results thus obtained will be 
factored into an empirical correlation. 

4.1 Available experimental data 

From the vast amount of experimental data on two-phase flow pressure loss only those 
easily accesible to the author have been used. A total of 253 measurements on vertical upflow 
have been gathered by Wisman (1975) and Stoop (1975), from five sources, viz. Cise (1964), 
Malnes (1966), Niese (1968), Muscettola (1963) and Janssen & Kervinen (1964), after further 
screening intended to eliminate systematic errors in the experiments. This dataset was extended 
by the author with 22 measurements on air-water flow in a pipe of 0.I mdia. carried out by 
Wisman (unpublished work). The six sources are tabled in figure 3, where some characteristic 
data are given. These data cover a wide range of relevant flow parameters, hence all flow 
patterns are represented as can be seen from the flow pattern map of Hewitt & Roberts (1969) 
in figure 4. The void fraction values from Cise, Malnes and Niese were computed from the 
measured frictional and total pressure drops, whereas for the steam-water experiments of 
Muscettola and Janssen & Kervinen the void fraction values were computed using the slip 
correlation of Bankoff-Jones. Detailed information on this topic is given in the individual reports. 
All data consists of values averaged over a cross-section. 

4.2 Correlation for Ei 
The values of (~Jv) obtained from [26] and [16] for 2r/D = 0.816 were plotted vs different 

dimensionless numbers expected to be relevent to interaction induced turbulence. It turned out 
that (eJu) is dependent on the product of three dimensionless numbers, viz. the Reynolds 
number for two-phase flow, defined in [29], the velocity ratio s, defined as Uo[UL and the 
quotient a/(l - a). The product of these numbers yields the number aUopLD/~L. Figure 5 shows 
the values for (e~/u) plotted vs this number. The resulting points might be correlated by 

a~ = 0 . 0 0 2 9  OlUGpLD]~L. [30] 
P 

The accuracy of this equation was evaluated using the statistical deviations 8 and ~r as defined 
by [22]-[24]. This resulted in an M.D. g = 1.1 per cent and an S.D. cr = 46.3 per cent. While it 
appeared likely that better approximation of the values (EJv) can be obtained by a relationship 
of the form 

~ = a + bOtU6pLD/rlL 
V 

in which a and b are constants, this correlation does not yield a smooth transition to single 
phase liquid flow, as it is clear that (Eilv) should be zero in case of vanishing void fraction. 
Hence we tried to find a correlation of the form 

~ = a(a + bUGPLD/~L) 
1.) 

Figure 6 shows the values of (EJav) plotted vs the number U G p L D [ ~ L  • These values are 
approximated by the correlation 

= a(lO0 + O.O024u(TpLD['OL). [31] 
V 
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As indicated by figure 6 the scatter around this correlation is significant, a fact reflected by the 
M.D. and S.D. values of g = 6 per cent and ~r = 41 per cent, respectively. However, introduction 
of the (~i11') values from [31] into the frictional pressure drop correlation [26] results in a rather high 
accuracy, as borne out by an M.D. g = 1.8 per cent and an S.D. cr = 22.3 per cent. 

The M.D. value of 6 per cent can be reduced to zero by optimizing the coefficients in [31], 
but this causes increased values for the deviations in correlation [26]. This is due to the fact that 
only part of the total frictional pressure drop is caused by phase interaction. Inaccuracies in the 
terms (~,,/v) and duL#dr) are in fact assigned to the term (~#v). In figure 7 the frictional 
pressure loss computed from [26], where (~.,]v) is given by [31], is plotted vs the measured 
pressure loss, showing good accuracy. 

The relative magnitude of ~i with respect to ~,, is plotted in figure 8 vs the quotient of the 
superficial velocities usdusc, equivalent with aud(l -a)uL. From this figure it can be seen that 
~ "> ~m in case of usdu,c >> 1, which is to be expected since ¢i and ~m are proportional to u6 and 
uc, respectively. 

Finally a remark on the applicability of the model to flows with high void fraction (i.e. wispy 
annular and annular flows) appears in order. The model is based on the assumption that the 
liquid phase is continuous and the viscosity forces are only present in this phase. It will hence 
be obvious that its applicability to flows with high void fractions should be considered highly 
questionable and the g o o d  correlation with experimental pressure drops found in this range a 
fortunate coincidence rather than a confirmation. 

5. C O N C L U S I O N S  

A correlation for the turbulence viscosity due to phase interaction in gas-liquid flow was 
developed, which shows satisfactory agreement with experimental data considering the margin 
of uncertainty introduced by the underlying assumptions. However, the present correlation 
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refers to values of (e/~,) in the core region of the channel, whereas also local values in the wall 
region are needed to determine the second order viscosity terms in the momentum balances for 
two-dimensional computations. Such local values of the turbulence viscosity can only be found 
with the aid of measurements of velocity distributions and shear stress. One way to overcome 
this problem would be to assume a radial distribution function for the turbulence viscosity, such 
as the one proposed by Reichardt (1951). However, a discussion of this application is beyond 
the scope of the present note. 
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